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Thermal Contact Resistance of Non-Conforming Rough Surfaces,
Part 1: Contact Mechanics Model

M. Bahrami∗, J. R. Culham†, M. M. Yovanovich‡and G. E. Schneider§

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo, Waterloo

Ontario, Canada N2L 3G1

A new analytical model for spherical rough contacts, in the form of a set of rela-
tionships, is developed and solved numerically. It is shown that the maximum contact
pressure is the parameter that specifies the contact pressure distribution. Simple corre-
lations for calculating the maximum contact pressure and the radius of the macrocontact
area as functions of the non-dimensional parameters are proposed. A relationship for
pressure distributions is derived where the load is higher than the “critical” load. A gen-
eral pressure distribution is developed which covers the entire range of spherical contacts
from the smooth Hertzian to the conforming rough contact. Finally, a criterion is derived
to identify flat surfaces where the surface curvature has negligible effect on the contact
pressure.

NOMENCLATURE
A = area,

¡
m2
¢

a = radius of contact, (m)
a0L = relative radius of macrocontact, aL/aHz
as = radius of microcontacts, (m)
b = flux tube radius, (m)
c0 = function of τ , 1.8 τ−0.028

c00 = function of τ , 0.31 τ0.056

c1 = Vickers microhardness coefficient, (GPa)
c2 = Vickers microhardness coefficient, (−)
dv = Vickers indentation diagonal, (µm)
dr = increment in radial direction, (m)
E = Young’s modulus, (GPa)
E0 = equivalent elastic modulus, (GPa)
F = external force, (N)
F 0 = relative force error
fi = discrete point forces, (N)
Hmic = microhardness, (GPa)
m = mean absolute surface slope, (−)
ns = number of microcontacts
P = pressure, (Pa)
P 00 = relative maximum pressure, P0/P0,Hz
r, z = cylindrical coordinates
u = sphere profile, (m)
u0 = maximum indentation, (m)
Y = mean surface plane separation, (m)
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Greek
α = non-dimensional parameter, σρ/a2Hz
β = summits radii of curvature, (m)
γ = general pressure distribution exponent
δ = max surface out-of-flatness, (m)
ηs = microcontacts density,

¡
m−2

¢
λ = dimensonless separation
ν = Poisson’s ratio, (−)
ξ = dimensionless radial position, r/aL
ρ = radius of curvature, (m)
σ = RMS surface roughness, (µm)
τ = non-dimensional parameter, ρ/aHz
ωb = bulk normal deformation, (m)

Subscripts
0 = value at origin
1, 2 = surface 1, 2
a = apparent
b = bulk
c = critical
Hz = Hertz
L = large, macro
r = real
s = small, summit
v = Vickers

Introduction
An accurate knowledge of contact mechanics, i.e.,

pressure distribution, the size of contact area and the
mean separation between surface planes as functions
of applied load, geometrical and mechanical charac-
teristics/properties of the contacting bodies, plays an
important rule in predicting and analyzing thermal
and electrical contact resistance and many tribologi-
cal phenomena.
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The contact of two spherical rough surfaces includes
two problems with different scales, i) the bulk or macro
scale problem, i.e., bulk elastic compression which can
be calculated using Hertz1 theory for ideal smooth
mean profiles of two surfaces, and ii) the small or micro
scale problem, i.e., deformation of surface asperities.
The scales of the sub-problems (macro and micro) are
very different, yet at the same time, strongly intercon-
nected. Due to surface roughness, contact between two
surfaces occurs only at discrete microscopic contacts
and the real area of contact, the total area of these
microcontacts, is typically a small fraction of the nom-
inal contact area.2,3 The macrocontact area is defined
as the area in which the microcontacts are distributed,
also the contact pressure falls off to a negligible value
at the edge of the macrocontact. The asperities act
like a compliant layer on the surface of the contacting
bodies, so that the contact is extended over a larger
apparent area than it would be if the surfaces were
smooth, and consequently, the contact pressure for a
given load will be reduced.4

Developing an analytical model, which enables us to
predict the contact parameters such as pressure distri-
bution and the size of the macrocontact area, is the
main goal of this study. It is also required to find
simple correlations for determining the above contact
parameters that can be used in analytical thermal con-
tact models. Another purpose of this research is to find
a criterion to define the flat surface where the surface
curvature can be neglected.

Theoretical Background

As previously mentioned, the spherical rough con-
tact mechanics problem is divided into macro and mi-
cro sub-problems. The macro problem is the contact
of two spherical bodies, which in this study is assumed
to be within the elastic limit, while the micro or the
deformation of the surface asperities is assumed to be
plastic.

Microcontact Modeling

The solution of any contact mechanics problem re-
quires that the geometry of the intersection and over-
lap of the two undeformed surfaces be known as a
function of their relative position. If the asperities of
a surface are isotropic and randomly distributed over
the surface the surface is called Gaussian. Williamson
et al.5 have shown experimentally that many of the
techniques used to produce engineering surfaces give
a Gaussian distribution of surface heights. Many re-
searchers, including Greenwood and Williamson3 as-
sumed that the contact between two Gaussian rough
surfaces can be simplified to the contact between a
single Gaussian surface, having the effective (sum) sur-
face characteristics, placed in contact with a perfectly
smooth surface, as shown in Fig. 1. The equivalent
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Fig. 1 Equivalent contact of conforming rough sur-
faces

roughness, σ, and surface slope, m, can be found from

σ =
q
σ21 + σ22 and m =

q
m2
1 +m

2
2 (1)

Bahrami et al.,6 based on the deformation mode of
asperities, categorized existing microcontact mechan-
ical models into three main groups: elastic, plastic,
and elastoplastic. By comparing the elastic model of
Greenwood and Williamson3 and the plastic model of
Cooper et al.7 for nominal flat contacts, Bahrami et
al.6 showed that the behavior of the above models
are similar, despite the different assumed deformation
mode of asperities. They also concluded that in most
real contacts, asperities deform plastically except for
special cases where the surfaces are extremely smooth,
see Bahrami et al.6 for more detail.

The present model is developed assuming the asper-
ities deform plastically. Plastic models assume that
the asperities are flattened during contact. This is the
same as assuming that the asperities penetrate into the
smooth surface in the equivalent model, without any
change in shape of the parts of the equivalent rough
surface not yet in contact. Therefore, bringing two
rough surfaces together within a distance, Y, is equiv-
alent to removing the top of the asperities at a height Y
above the mean plane. The assumption of pure plastic
microcontacts enables the micro mechanics to be spec-
ified completely by the mean slope m and the surfaces
roughness σ, without having to assume some determin-
istic peak shapes, as with elastic microcontact models.
Cooper et al.7 derived the following relationships for
contact of nominal flat rough surfaces, assuming plasti-
cally deformed hemispherical asperities, whose height
and surface slopes have Gaussian distributions, where
the mean separation Y is constant throughout the con-
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tact plane

as =

r
8

π

³ σ
m

´
exp

¡
λ2
¢
erfc λ

ns =
1

16

³m
σ

´2 exp ¡−2λ2¢
erfc λ

Aa

Ar
Aa

=
1

2
erfc λ


(2)

where λ = Y/
√
2σ, ns, as, Ar and Aa are the dimen-

sionless mean plane separation, number and average
size of microcontacts, the real and the apparent con-
tact area, respectively.

Microhardness

Microhardness is not constant throughout the mate-
rial. Hegazy8 demonstrated through experiments with
four alloys that the effective microhardness is signifi-
cantly greater than the bulk hardness. Microhardness
decreases with increasing depth of the indenter un-
til bulk hardness is obtained. He derived empirical
correlations to account for the decrease in contact mi-
crohardness of the softer surface with increasing depth
of penetration of asperities on the harder surface:

Hv = c1 (d
0
v)
c2 (3)

where Hv is the Vickers microhardness in (GPa), d
0
v =

dv/d0 and d0 = 1 (µm), dv is the Vickers indentation
diagonal in (µm), and c1 and c2 are correlation co-
efficients determined from the Vickers microhardness
measurements.

Macrocontact Modeling

According to Johnson4 in static frictionless contact
of solids, the contact stresses depend only on the rel-
ative profile of the two surfaces, i.e., upon the shape
of the interstitial gap before loading. Hertz1 replaced
the two spheres contact geometry by a flat surface and
a profile, which results in the same undeformed gap
between the surfaces. Additionally, all elastic deforma-
tions can be considered to occur in one body, which has
an effective elastic modulus, E0, and the other body is
assumed to be rigid. The effective elastic modulus can
be found from

1

E0
=
1− υ21
E1

+
1− υ22
E2

(4)

where E and υ are the Young’s modulus and Poisson’s
ratio, respectively. For the contact of two spheres, the
effective radius of curvature is

1

ρ
=
1

ρ1
+
1

ρ2
(5)

As a result of the above assumptions and by consid-
ering axisymmetric loading, the complex geometry of
two spherical rough surfaces is simplified to a rigid
smooth sphere having the equivalent radius of cur-
vature in contact with a rough flat which has the
equivalent surface characteristics, Fig. 2.

smooth rigid 
sphere

elastic half-space
contact plane

O r

ρ
σH , m

E /

mic

Fig. 2 Equivalent contact geometry of two spher-
ical rough surfaces

The open literature contain very few analytical me-
chanical models for the contact of spherical rough sur-
faces. The first in-depth analytical study to investigate
the effect of roughness on the pressure distribution and
deformation of contacting elastic spherical bodies was
performed by Greenwood and Tripp.9 Greenwood and
Tripp developed their model based on the same as-
sumptions as the Greenwood andWilliamson3 nominal
flat rough contact model. Their assumptions can be
summarized as follows

• contact is axisymmetric and the bulk deformation
is elastic

• rough surfaces are isotropic and have Gaussian
height distribution with a standard deviation, σ

• the distribution of summit heights is the same as
the surface heights standard deviation, i.e., σs =
σ

• the deformation of each asperity is independent
of its neighbors

• the asperity summits have a spherical shape all
with a constant radius, β, the asperities entirely
deform within the elastic limit and Hertz1 theory
can be applied for each individual summit.

They derived a geometrical relationship relating
the local separation to the bulk deformation and the
sphere profile. The elastic deformations produced by
a pressure distribution over an area of the surface can
be calculated by superposition, using the Boussinesq
solution for a concentrated load on a half-space, and
the fact that the displacement due to an axisymmetric
pressure distribution will also be axisymmetric. It can
be shown that the normal displacement in a half-space
due to an arbitrary pressure distribution can be found

3 of 11

American Institute of Aeronautics and Astronautics Paper 2003-4197



from10

ωb (r) =



2

E0

Z ∞
0

P (s) ds r = 0

4

πE0r

Z r

0

sP (s)K
³s
r

´
ds r > s

4

πE0

Z ∞
r

P (s)K
³r
s

´
ds r < s

(6)

where ωb (r) is the local bulk deformation, K (·) is the
complete elliptic integral of the first kind, and s is a
dummy variable. Greenwood and Tripp9 used Eq. (6),
which gave a complementary relation between local
separation and the pressure. They reported a complete
set of relationships and solved it numerically.
The most important trends in the Greenwood and

Tripp9 model were that an increase in roughness re-
sulted in a decrease in the contact pressure, compared
with the Hertzian pressure and the effective macro-
scopic contact radius grew beyond the Hertzian con-
tact radius. The Greenwood and Tripp9 model is
attractive for its mathematical simplicity but it suf-
fers from the following shortcomings:

• a constant summit radius β is unrealistic. For a
random surface, β is also a random variable11

• two of its input parameters, i.e., radius of summits
β and density of summits ηs cannot be measured
directly and must be estimated through statistical
calculations. These parameters are sensitive to
the surface measurements4

• applying the model is complex and requires com-
puter programming and numerically intensive so-
lutions

• all asperities are assumed to deform elastically.

Tsukada and Anno12 and Sasajima and Tsukada13

with the same assumptions as Greenwood and Tripp9

developed a model and offered expressions for pressure
distribution as a function of non-dimensional maxi-
mum pressure, P0/P0,Hz, and non-dimensional radius
of macrocontact area, aL/aHz, for rough sphere-flat
contacts. Tsukada and Anno12 and Sasajima and
Tsukada13 presented these two parameters in a graphi-
cal form, in discrete curves, for relatively small radii of
curvature, i.e., 5, 10, and 15 mm and roughness in the
range of (0.1 to 2 µm). They did not report general
expressions for the maximum pressure and the radius
of macrocontact.

Present Model
The micro mechanical analysis of the present model

is developed on the basis of the Cooper et al.7 plas-
tic model. The macrocontact area is divided into

ρ
O

u0

r

dr

Y(r)

Y(r)

dr

rigid smooth
sphere

flat mean 
plane

elastic 
half-space

ω (r)

F

E /

b

Fig. 3 Contact geometry after loading

infinitesimal conforming surface elements where the
conforming rough surface relationships, i.e., Eqs. (2)
can be applied. Bulk deformations are related to the
local separation of the contacting surfaces, through
a geometrical relationship similar to Greenwood and
Tripp.9 The assumptions of the present model can be
summarized as:

• contacting surfaces are macroscopically spherical,
which are considered as a sphere-flat contact, Fig.
2

• microscopically, contacting surfaces are rough and
isotropic with a Gaussian asperity distribution.
Only one surface is taken to be rough while the
equivalent roughness is assumed to be on the flat
plane and the sphere is assumed to be smooth

• microcontacts deform plastically and the asperity
pressure is the local microhardness of the softer
material in contact. Reasons supporting this as-
sumption discussed in Bahrami et al.6

• deformation of each asperity is independent of its
neighbors

• only the first loading cycle is considered
• the load is axisymmetric and the contact is fric-
tionless, i.e., there are no tangential forces in the
contact area

• the macrocontact is elastic where the elasticity
theory given in Eq. (6) employed to determine
the substrate deformation

• the contact is static, i.e., there is no relative mo-
tion or vibration effect.

In the vicinity of the contact region the profile of
the sphere can be written as

u (r) = u0 − r2/2ρ (7)
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Fig. 4 Discrete point forces and the equivalent
pressure distribution on the plastic zone

Figure 3 shows the contact geometry after applying
the load. The local separation, Y (r), is defined as the
distance between two mean planes of the contacting
surfaces and can be written as

Y (r) = ωb (r)− u (r) = ωb (r)− u0 + r2/2ρ (8)

At each microcontact a discrete point force is created
as illustrated in Fig. 4. The sum of these discrete point
forces must be equal to the external force, F. It is as-
sumed that the asperities of the rough surface behave
like a plastic zone on an elastic half-space, in the sense
that the effect of the discrete point forces on the elas-
tic half-space is considered as an equivalent continuous
pressure distribution, P (r). It should be noted that
all bulk deformations are assumed to occur in the elas-
tic half space which has an effective elasticity modulus
E0 and the sphere is assumed to be rigid. Consider
an infinitesimal surface element, dr → 0 where Fig. 3
shows a magnified element in which the local separa-
tion, Y (r), is uniform. The ratio of real to apparent
area for a surface element can be found from Eq. (2)

Ar (r)

Aa (r)
=
1

2
erfc λ (r) (9)

where Aa (r) = 2πrdr. As a result of surface curva-
ture, the mean local separation and consequently the
mean size of the microcontacts vary with radial po-
sition. The local microhardness can be determined
from the Vickers microhardness correlation, Eq. (3)
as a function of the local mean microcontact radius.
The relation between the Vickers diagonal dv and
the microcontact radius as, based on equal areas, is:
dv =

√
2πas. Therefore, the local microhardness is

Hmic (r) = c1
h√
2πas (r)

ic2
(10)

where the local radius of the microcontacts can be
found from Eq. (2)

as (r) =

r
8

π

³ σ
m

´
exp

£
λ2 (r)

¤
erfc λ (r) (11)

r / aHz

P
/P

0,
H

z

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

aL

Hertz

Model

Fig. 5 Pressure distribution

The external load F is the summation of the point
forces at the microcontacts

F =
X
i

fi =

ZZ
contact area

Ar (r)Hmic (r) (12)

Substituting Eq. (9) into Eq. (12)

F = π

Z ∞
0

Hmic (r) erfc λ (r) rdr (13)

Instead of aL, the upper limit of the integral is set to
infinity, since the macrocontact radius is not known
and the effective pressure distribution rapidly ap-
proaches zero. On the bulk side, the equivalent pres-
sure must satisfy the force balance

F = 2π

Z ∞
0

P (r) rdr (14)

The equivalent pressure distribution on the elastic
half-space can be found from Eqs. (13) and (14)

P (r) =
1

2
Hmic (r) erfc λ (r) (15)

Knowing the pressure distribution, the normal dis-
placement of the bulk can be found from Eq. (6).
Eqs. (6), (8), (10), (11), (14), and (15) form a closed
set of governing relationships. A computer program
was developed to solve the set numerically. Appendix
A describes the algorithm of the numerical solution.
No exact definition exists for the macrocontact ra-

dius in the literature. It is assumed in this study as
the radius where the normalized pressure is negligible,
i.e., P (r = aL) /P0 < 0.01.

Numerical Results
A simulation procedure was run to construct the

results shown in Figs. 5 to 8, based on the algo-
rithms described in Appendix A and by using input
data shown in Table 1.
Figure 5 shows the pressure distribution predicted

by the present model and the Hertzian pressure. It can
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Table 1 Input parameters for a typical contact

ρ = 25 (mm) F = 50 (N)
σ = 1.41 (µm) E0 = 112.1 (GPa)
m = 0.107 (−) c1/c2 = 6.27 (GPa) /− 0.15 (−)

be seen that due to the presence of roughness the max-
imum contact pressure compared to the Hertzian, is
reduced and the load is spread over a greater area. The
predicted macrocontact radius aL is also shown in Fig.
5. Unlike the Hertzian pressure, the effective pressure
falls asymptotically to zero. As expected, the mean
radius of microcontacts as, and microcontacts density
ηs, decrease as the radial position r increases. The mi-
crohardness profile is shown in Fig. 8. To investigate

r / aHz

P
/P

0,
H

z

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Hertz
σ = 0.03

σ = 0.14

σ = 0.71

σ = 1.41 (µm)

σ = 5.66

σ = 14.14

Fig. 9 Effect of roughness on equivalent pressure
distribution

the effect of roughness on the pressure distribution, the
program was run for a wide range of roughness from
0.02 to 14.4 (µm) while all other parameters in Table
1 were kept constant. Figure 9 illustrates the effect
of roughness on the pressure distribution. It can be
seen that the effective pressure distribution approaches
the Hertzian pressure distribution as the roughness de-
creases.

Approximate Model
The main goal of this study is to develop simple

correlations for determining the effective pressure dis-
tribution and the macrocontact radius as functions of
non-dimensional parameters that describe the contact
problem. To develop an approximate solution, the fol-
lowing simplifications are made:

• an effective microhardnessHmic which is constant
throughout the contact region is considered

• the surface slope m is assumed to be a function
of surface roughness, σ.

In this section, it is demonstrated that a general
pressure distribution as a function of the maximum
contact pressure exists. Then, using dimensional anal-
ysis the number of governing non-dimensional param-
eters is determined, and finally simple correlations for
the maximum contact pressure and the macro contact
radius are derived.
Figure 10 illustrates non-dimensional pressure dis-

tributions for some values of P 00 = P0/P0,Hz as func-
tion of non-dimensional radial location ξ = r/aL. It
was observed that the non-dimensional pressure dis-
tribution can be specified as a function of the dimen-
sionless maximum pressure P 00, and the radial position,
ξ. In other words, a general profile exists that presents
all possible pressure distributions.
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Fig. 10 Dimensionless pressure distributions for
spherical rough surface contact

The Hertzian pressure distribution1 where the con-
tacting surfaces are perfectly smooth is:

PHz (r/aHz) = P0,Hz

q
1− (r/aHz)2 (16)

where

P0,Hz =
3F

2πa2Hz
and aHz =

µ
3Fρ

4E0

¶1/3
The profile of the pressure distribution, especially in
the contacts where the dimensionless maximum pres-
sure is less than 0.6, is very similar to a normal (Gaus-
sian) distribution. However, as the dimensionless max-
imum pressure approaches one (the Hertzian contact)
the pressure distribution begins to deviate from the
normal distribution profile. The general profile for the
pressure distribution for spherical rough surface con-
tact was found to be

P (ξ) = P0
¡
1− ξ2

¢γ
(17)

where ξ = r/aL, and γ can be calculated through a
force balance

F = 2π

Z aL

0

P (r) rdr (18)

Substituting Eq. (17) into (18), after evaluating the
integral, one finds

γ = 1.5P 00 (a
0
L)
2 − 1 (19)

where P 00 = P0/P0,Hz, and a0L = aL/aHz.
At the limit, where roughness approaches zero, P 00

and a0L both approach one and γ = 0.5 and Eq. (17)
yields the Hertzian pressure distribution, Eq. (16).
Knowing the general pressure distribution profile, i.e.,
Eq. (17), the problem is reduced to find relationships
for P0 and aL. Additionally, the radius of the macro-
contact area, based on its definition, can be found if

Table 2 Physical input parameters and their di-
mensions for spherical rough contacts

Parameter Dimension
Effective elastic modulus, E0 ML−1T−2

Force, F MLT−2

Microhardness, Hmic ML−1T−2

Radius of curvature, ρ M
Roughness, σ M
Max. contact pressure, P0 ML−1T−2

P0 and the pressure distribution are known, therefore
the key parameter is the maximum contact pressure,
P0.

Dimensional Analysis

Dimensional analysis using the Buckingham Π the-
orem has been applied to many physical phenomena
such as fluid flow, heat transfer and stress and strain
problems. The Buckingham Π theorem proves that
in a physical problem including n quantities in which
there are m dimensions the quantities can be arranged
into n − m independent dimensionless parameters.14

Table 2 summarizes the independent input parame-
ters and their dimensions for spherical rough contacts.
Hmic is an effective (mean) value for the microhard-
ness of the softer material in contact.
The slope of the surface m may be estimated using

an empirical relationship suggested by Lambert15

m = 0.076 σ0.52 (20)

where σ is the surface RMS roughness in (µm).
The surface slopem is not considered as an indepen-

dent input parameter since it can be determined from
Eq. (20) as a function of surface roughness, therefore
it is not included in Table 2.
All quantities in Table 2 are known to be essential to

the maximum contact pressure and hence some func-
tional relation must exist in the form of

P0 = P0 (ρ,σ, E
0, F,Hmic) (21)

Applying the Buckingham Π theorem there will be
three Π groups so the maximum pressure can be
more compactly stated as a function of these three
non-dimensional parameters. Johnson4 following the
Greenwood and Tripp9 model, introduced a non-
dimensional parameter α, that we may call the rough-
ness parameter, as the ratio of roughness over the
Hertzian maximum bulk deformation, ω0,Hz

α =
σ

ω0,Hz
≡ σρ

a2Hz
= σ

µ
16ρE02

9F 2

¶1/3
(22)

The other non-dimensional parameters were chosen to
be τ the geometric parameter, and E0/Hmic the mi-
crohardness parameter. The geometric parameter τ is
defined as

τ =
ρ

aHz
=

µ
4E0ρ2

3F

¶1/3
(23)
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Fig. 12 Dimensionless maximum contact pressure

The computer program explained in the previous
section was run for a wide range of input parame-
ters to construct Figs. 11 - 13. As shown in Fig.
11, the effect of microhardness parameter E0/Hmic,
on the maximum contact pressure was observed to be
minimum and may be ignored. Figure 12 illustrates
the dimensionless maximum contact pressure in the
form of a family of curves for a wide range of α and
τ . As α decreases, which is equivalent to a decrease
in roughness or an increase in radius of curvature or
load, the dimensionless maximum pressure approaches
1 (the Hertzian pressure). Figure 13 illustrates the
macrocontact radius as a function of α and τ . As
can be seen, by decreasing α, the dimensionless ra-
dius of contact approaches one (the Hertzian contact).
Plots for the dimensionless maximum pressure and the
macrocontact radius were curve fitted. The follow-
ing expressions can be used to estimate the maximum
dimensionless contact pressure and the dimensionless
radius of contact, respectively

P 00 =
P0
P0,Hz

=
1

1 + 1.37α τ−0.075
(24)

α

a L
/a

H
z

10-2 10-1 100 101 102

100

101

τ = 84.5
τ = 247
τ = 1149
τ = 5333
τ =67467

τ = 84.5

τ = 67467

Fig. 13 Dimensionless radius of macrocontact

ρ
ρ

a

b

a = b

b) critical forcea) a half-space contact problem

F <
cF

L

L

L L

cF

Fig. 14 Contact of two finite spherical rough bod-
ies

a0L =
aL
aHz

= 1− 1.50 ln P 00 (25)

−0.14 ln2 P 00 − 0.11 ln3 P 00
An expression for the non-dimensional radius of the
macrocontact, a0L, was developed as a function of α
and τ in the form of a0L = c0

p
α+ c00 where c0 and

c00 are functions of τ only. In the limit where α →
0 (Hertzian contacts) as shown in Fig. 13, a0L → 1
therefore a relationship between c0 and c

0
0 can be found

such that c00 = (1/c0)
2
. Thus, c0 was curve-fitted and

the following correlation for a0L was obtained

a0L =
aL
aHz

= 1.80

√
α+ 0.31τ0.056

τ0.028
(26)

The RMS difference between Eqs. (24) to (26) and
the model is estimated to be less than 8 percent in the
range of 0 ≤ α ≤ 100 and 50 ≤ τ ≤ 80, 000.
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Elastic Compression
In most engineering applications the size of the con-

tacting bodies is finite and/or the radius of curvature
is large, especially in the contacts where the surfaces
are almost flat or slightly curved. When the above sur-
faces are placed in contact, by applying a specific force
that we call the critical force the macrocontact area
reaches to the boundaries of the contacting bodies,
i.e., aL = bL, as shown in Fig. 14. By increasing the
force beyond the critical force, the size of macrocontact
remains constant but the contact pressure increases.
Since the bulk deformation is assumed to be elastic,
we refer to the above contact problems as elastic com-
pression. Elastic compression cannot be treated as
a half-space contact problem, since the half-space as-
sumption cannot be justified especially in the regions
close to the edge of the contacting bodies. The criti-
cal force, Fc, and the critical pressure distribution, the
pressure distribution associated with the critical force
for a specified spherical rough contact assembly are
unique.
In contact stress theory the displacement at any

point in the contact surface depends on the distribu-
tion of pressure throughout the whole contact. Ac-
cording to Johnson4 the above interconnection may
be avoided if the solids are modeled by a simple Win-
kler elastic foundation rather than a half-space. As
illustrated in Fig. 15, the elastic compression approx-
imation implies that as load passes the critical load
the elastic foundation, which rests on a rigid base,
is compressed by the rigid spherical indenter. There
is no interaction between the springs of the model,
i.e., shear between adjacent elements of the founda-
tion is ignored. Therefore, contact pressure at any
point depends only on the displacement at that point.
Equation (17) can be used to calculate the contact
pressure distribution, where the external force is less
than or equal to the critical load. Beyond the criti-
cal load where F > Fc, the size of the macrocontact
remains constant and the elastic foundation approxi-
mation is used to determine the pressure distribution.
Assuming the elastic foundation approximation, a uni-
form increase will be added to the critical pressure dis-
tribution at each point in the contact area. Therefore,
the general pressure distribution can be summarized
as

P (ξ) =


P0
£
1− ξ2

¤γ
F ≤ Fc

P0,c
£
1− ξ2

¤γc + F − Fc
πb2L

F ≥ Fc
(27)

where aL = bL for F ≥ Fc, P0,c, and γc are the
maximum pressure and the exponent of the critical
pressure distribution, respectively. Figure 16 shows
the predicted pressure distributions for some values
of the external load as an example. The parameters
of the contact are: ρ = 10 (m) , E0 = 112 (GPa) ,
σ = 2 (µm) , and bL = 12 (mm) .

ρ

  

F > Fc

rigid base

rigid 
spherical 
indenter

  bL

  d

Fig. 15 Elastic foundation, Winkler model

To find a relationship for the critical force, Eqs. (24)
and (25) should be solved simultaneously where aL =
bL, which leads to an implicit relation, and requires an
iterative solution. To avoid the iterative solution, the
following approximate expression for aL is offered

a0L = 1.5
√
α+ 0.45 (28)

The above correlation is only a function of α, and it
was developed for contacts where the effective radius of
curvature is relatively large, i.e., the situations where
the elastic compression more likely occurs. Using Eq.
(28), the critical force can be estimated from

Fc =
4E0

3ρ

£
max

©
0,
¡
b2L − 2.25σρ

¢ª¤3/2
(29)

where max{x, y} returns the maximum value between
x and y.
A criterion for defining the flat surface, where the

surface curvature has negligible effect on the pressure
distribution can be derived by setting Fc = 0. Setting
Fc equal to zero means that with applying no load
aL = bL, thus the contacting surfaces are practically
flat, which leads to

b2L
σρ
≤ 2.25 (30)

For spherical surfaces, Clausing and Chao16 used a
geometrical expression that relates the maximum out-
of-flatness, δ (see Fig. 15) to the radius of curvature

ρ =
b2L
2δ

(31)

Combining Eqs. (30) and (31), the flat surface crite-
rion in terms of surface out-of-flatness can be obtained
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Fig. 16 Contact pressure distribution

as
δ

σ
≤ 1.12 (32)

In other words, if the out-of-flatness and the roughness
of a surface are in the same order of magnitude, the
surface is flat.

Concluding Remarks
The mechanical contact of spherical rough surfaces

was studied and a new analytical model was developed.
The deformations of surface asperities were considered
to be plastic while the bulk deformation was assumed
to remain within the elastic limit.
A closed set of governing relationships was derived

and solved numerically. A computer code was de-
veloped to solve the governing relationships. The
algorithm of the numerical procedure is explained in
Appendix A. The pressure distributions predicted by
the model were plotted for different values of surface
roughness and it was seen that as the surface roughness
approaches zero the predicted pressure distribution ap-
proaches the Hertzian pressure.
Additionally, it was shown that a general pressure

distribution profile exists that encompasses all spher-
ical rough contacts. The maximum contact pressure
was observed to be the key parameter that specifies the
contact pressure distribution. The suggested general
pressure distribution expression yields the Hertzian
contact pressure at the limit, where roughness is set
to zero.
Using dimensional analysis, the number of inde-

pendent non-dimensional parameters that describe
the maximum contact pressure was determined to be
three, the roughness α, the geometric τ , and the micro-
hardnessE0/Hmic parameters. The effect of the micro-
hardness parameter E0/Hmic on the maximum contact
pressure was observed to be small and ignored. Using
curve-fitting techniques, simple correlations were sug-
gested for calculating the maximum contact pressure
distribution and the radius of the macrocontact area,

as functions of roughness α, and geometric parameters
τ .
An expression for estimating the critical load was

derived, where aL = bL. The Winkler approximation
was used to derive a relationship for the contact pres-
sure distributions, where the loads are higher than the
critical load. This expression along with the above
correlation formed a general pressure distribution that
encompasses the possible contact cases ranging from
the smooth Hertzian to the conforming rough contact.
Also a criterion was offered to identify the flat sur-

face, where the effect of surface curvature on the con-
tact pressure can be neglected. Based on this criterion,
the surface can be considered flat if the surface out-
of-flatness and roughness are in the same order of
magnitude.
The advantages of the present model over the Green-

wood and Tripp9 (GT) model are:

• the present model requires two input surface pa-
rameters, roughness σ, and surface slope m. The
GT model needs three input parameters, i.e., σ,β,
and η

• unlike the summit radius β and the microcontact
density η in the GT model, the present model
input parameters can be measured directly and
they are not sensitive to the surface measurements

• a pressure distribution profile was proposed as a
function of the maximum contact pressure which
covers all possible contact cases

• simple correlations for determining the maximum
contact pressure and the radius of macrocontact
as functions of two non-dimensional parameters,
i.e., the roughness parameter α and the geometric
parameter τ were offered.
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Appendix A: Numerical Procedure
The following procedure, Fig. 18, is used to solve the

governing set of relationships outlined in the present
model. A value of u0,1 is assumed, pressure distribu-
tion can be computed. P (r) is then used to calculate
an improved ωb (r). This improved ωb (r) now is used
to calculate a new pressure distribution Pnew (r), and
so on until P (r) converges. The algorithm of the
above procedure is shown in the inner loop flow chart,
Fig. 17. The pressure distribution P (r) is integrated
and compared with the external load F and the rel-
ative force error F ∗1 is calculated. u0,2 is assumed
and all the above-mentioned steps are repeated for
u0,2 to compute F

∗
2 . Using linear interpolation; unew

and then F ∗new are similarly calculated by using the
inner loop procedure. If F∗new is not within the ac-
ceptable tolerance, u0 and F

∗ are updated and the
iterative pressure-displacement calculation procedure
is repeated until the convergence is achieved. The loop
is continued until the integrated pressure and external
load are within an acceptable tolerance.

Calculate P(r)

Calculate w    (r)

Calculate P   (r)

                  u
From Main Loop
             

End

Not Acceptable

Acceptable

| P   (r) - P(r) |
P  (r)

: TOL.

 P(r) = P   (r) 

 w  (r) = w     (r)
 b,new

new

new

new

new

 b,new b

0

Fig. 17 Pressure-displacement iteration proce-
dure, the inner loop
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Fig. 18 Numerical algorithm
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